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Stochastic quantization of the O(N) ~b 4 scalar field theory leads to a variational 
determination of the self-energy. An auxiliary composite field is introduced, 
leading to a simpler formalism. For a solvable toy model, variational results are 
significantly improved with respect to those without this auxiliary field, even for 
its crudest propagator approximation. 

1. INTRODUCTION 

The stochastic quantization method of Parisi and Wu (1981) provides 
an alternative to conventional canonical and path integral methods to quantize 
field theories. Euclidean Green functions appear as equilibrium limits of 
stochastic averages of products of fields with dynamics governed by Langevin 
equations. Recently our interest focused on the large-N limit in stochastic 
quantization (BErard et al., 1995) and on the possibility of variational self- 
energy expansion in I lN when stochastically quantizing the O(N) dp 4 theory 
(Grandati et al., 1992, 1993). The main purpose of this paper is to present 
an alternative application of the variational principle. As we shall see, it is 
possible to introduce an auxiliary stochastic field to eliminate the O(N) dp 4 
self-interaction. This auxiliary field plays the role of an additional variational 
parameter and thereby permits a better determination of the self-energy. 

The paper is organized as follows: In Section 2 we rapidly recall basics 
of stochastic quantization and of the variational procedure. Section 3 is 
devoted to the introduction of an auxiliary stochastic field in this formalism; 
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we determine further the different orders in I I N  of the variational self-energy 
of the O ( N )  r 4 theory in D dimensions. Finally, in Section 4 a completely 
solvable toy model is used to assess the relevance of the method. 

2. S T O C H A S T I C  QUANTIZATION AND VARIATIONAL 
P R I N C I P L E  

Let SE[~b] be the Euclidean action of  some O ( N )  scalar field in a 
D-dimensional space-time 

SE[tb] = S~ + ks~ntkb ] (1) 

where S~ stands for the free action and where the strength h of  the 
interaction term s~nt[~b] appears explicitly. 

The system is supposed to be in a (D + 1)-dimensional heat reservoir, 
the extra dimension being supplied by a fictitious time t. The equilibrium 
will be reached in the limit t ---> ~. The fields ~ ( x ,  t), ~ e { 1 . . . . .  N }, 
can now take values in this (D + 1)-dimensional Euclidean space and evolve 
in t according to the Langevin equation: 

o,b~(x, t) ~sE[6] 
- - -  + -q~(x,  t)  ( 2 )  

ot a 6 ~ ( x ,  t)  

where ~q,,(x, t) is a random noise with first moment zero and second moment 

('q~(x, O'qa(x',  t ' ) )  n = 2 ~ 8 ~  - x ' ) ~ ( t  - t ' )  (3) 

The mean value (Ftni), ~ is defined over the Gaussian distribution of  the "q's. 
The complete solution of equation (2) can be written in the following 

integral form: 

f f [ ~S~t[cb] ] (4) 6~(x,  t) = d ~  ' dt '  Gm2(X -x ' ;  t - t') -q~(x', t') - X 8gb~(x--~,~jJ 

where GmE(X, t) is the free Green function: 

f d~ eipx_(p2+m2)t Gm2(X, t) = O(t) j 

Following Greensite (1983) and Amundsen and Damgaard (1984), we use 
this last equation to build a variational approach to the solution of equation 
(2). A trial field is introduced which reads 

f f ~' l (x ,  t) = dDx ' dt '  G~(x  - x ,  t - t ' ) ~ . ( x ' ,  t ' )  (5) 

where ~(p) is a functional parameter. 
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We then have 

I d~ 1 (6) 
!mi_~ Tr((d:t~r = N ( 2 . t r )  o p2 -t- or(p) 

and clearly cr can be identified with the self-energy. 
If  we define 

f f I ~S~t[(~[~ 1 ~t~l(x, t) = d~ ' dt' Gm2(x - x'; t - t') "%(x', t') - k Bd~td,l(x, ' / , ) j  (7) 

then minimizing 

VIii = lim (Tr[d~l(x, t) - c~t~](x, t)]2)~ (8) 
t.--->oo 

with respect to the variations of cr gives the best variational approximation 
to the solution of (2) in the subspace of our trial functions ~bt~l(x, t) given 
in (5). 

It was shown in (Grandati et al. 1992, 1993) that the resulting self- 
energy can be built recursively using a IlN expansion. This leads to the 
resolution of the following system: 

l I I ~ d ~  n,k>.O il...ik>_l n+il+...+ik=m 

where 

. 

• 8cr(yt) "'" 8cr(yk)~=~0 = 0 
(9) 

and V~ and cr~ are the nth-order terms in the expansions of  V~ and tr, respec- 
tively, in powers of  IlN. Order by order, (9) is a Fredhom equation of  the 
second kind: 

f ~F~ = G(o'0, trl(X) . . . .  r 
d~ crn(y) 8tr(y) ~=~0 (11) 

The solution of this equation allows for an iterative determination of 
all coefficients in the IlN expansion of  the mass operator cr(p 2) once tr0 is 
known. At the same time the determination of  trm's of higher and higher 
order ensures a better and better trial field ~b t*]. The essential achievement 

8V,,[cT] 
F~[cr(x)] - - -  (I0) 

8or(x) 
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of the method resides, for the O(N) 6 4 theory, in arbitrary dimensions, in 
the analytical solution (Grandati et al., 1993) of(11) for all order n in the 
expansion in 1/N. 

3. I N T R O D U C T I O N  OF THE AUXILIARY FIELD: ~b 4 T H E O R Y  

The method outlined above is now extended as follows. The Euclidean 
action reads 

f [1 m 2 ] SE[(D] = dOx OtL~)i(x'Olff~i(x) -~- T ~i(x'~bi(x) "~- ~ (+i(x)f~i(x)'2 (12) 

where summation on repeated indices is implied. The common practice to 
eliminate the interaction term is to use the following identity in the parti- 
tion function: 

Dp exp - d~ ~. p(x) - ~ 6i(x)6i(x) = .g (13) 

where g = ~ and .N" is a number independent of 6,(x). 
In the partition function the action is now changed to 

f [~ m262 N02 062] (14, SE[6, 0] = d~ O~d~ 0~6, + --~ + ~ + ig - - ~  ] 

where 62 stands for ~i 6i(X'6i(X)" 
In stochastic quantization, we have to consider both 6 and P as coupled 

stochastic fields with generalized Langevin equations 

f gSE[6, p] 06,(X,ot t_______~) _ d~  K,(x - y) gd&,(y, t) + "q,~(x, t) (15) 

f ~sd6, p] 
Op(x,at t) _ d~ Kp(x - y) Bp(y, t) + O(x, t) (16) 

where -q and 0 are two independent Gaussian noise terms with two-point 
correlation functions given by 

("q~(x, t)'q~(y, t')),~ = 2K,(x - y)~(t - t ' ) ~  (17) 

(O(x, t)O*(y, t'))~ = 2Kp(x - y)~(t - t') (18) 

In equations (15) and (16) two kernels K, and Kp are introduced to homogenize 
the dynamics for q~ and p. 
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Convenient choices for K,  and Kp are 

K,(x - y) = (n - m 2)- l~ O(x _ y), 12 ~ o( x _ y)  Kp(x - y) = -~ 

In p-space the explicit forms of the Langevin equations become 

O~(p, t) 
Ot 

Op(p, t) _ 
Ot 

We define now the positive-definite quantity 

1 lim Try( f d~ z)e V+ = ~ t-~ ~ eipx[d~t~rl(p, t) - 6[~"l(p, t)] 
,'q 

and choose the trial field as 

+~(p ,  t) = dr  a~(p;  t - t')~l~,(p, t') 

with 

ig 1 f d~ ' ~b~(p, t) ~" p2 + m 2 ~ p(p', t)d~(p - p', t') +Tie(p, t) 

(19) 

p(p, t) - ~ d~,~(p', t)d~(p - p', t) + O(p, t) (20) 

(21) 

(22) 

(25) 

with 

f d~ 1 
13 = - g  (27r)O tr(p)(p2 + mZ ) 

Ga(p, t) = 0(t) e x p { -  a(p)t} 

From equation (7) we have 

Ii [ ig m2)_ 1 d~t~'~](p, t) = dr e -t`-'') ~I~(P, t ') - ~- (p2 + 

f d~ p[a'Vl(p', t')~b~l(p t ' ) ]  (23) X ~ - p ' ,  

To fix the form p[~'~] of the trial composite field, we note that with the 
ansatz of equation (22) we have from equation (20) 

lim(p(p, t)}0,~ = i13(2"tr)~176 (24) 
l-.-)oo 



618 B6rard, Grandati, and Grang~ 

From equation (20) one may also evaluate the "p-correlator" and find 

lim (p(p, t)p*(p', t))0,~ 
t ~  

= (27r)2~176176 

12 
+ (2,rr)~176 + p') --~ 

[ g 2 I d ~  q 1 
• 1 + -~- (2"tr) ~ tr(q)tr(p - q)[1 + or(q) + or(p - q)] 

, ] 
X (q2 + m2)[(p _ q)2 + m 2] (26) 

Hence an ansatz for p(p, t) modeled after the free-field solution of equation 
(20) and consistent with (24)-(26) is 

f0 o pt~,~l(p, t)= i~(2~r)DgO(p) + dt' Gv(p; t - t')O(p, t') (27) 

With relation (18) one finds 

lim (pI~al(p, t)pt~,~l,(p,, t))o,,1 

12 1 = (2~)2OgO(p)gD(p')~ 2 + (2"rr)DgO(p + p ' )  - - ~  (28) 
N ~/(p) 

which fixes ~/(p) by comparison with equation (26). 
The evaluation of the variational potential (21) is most easily performed 

using stochastic quantization diagrammatic rules (B6rard et al., 1995; 
Grandati, 1991; B6rard, 1993) with the result 

f d~ 1 ( { t r ( P ) -  1 +~gl[6(p2+m2)]} 2 
Vt,l,l = (2,tr)O p2 + m 2 ~ ( ~ [ ~ - ~  i i  

+ g2 

3N(p z + m 2) 

• (2~r) ~ ~l(p')~(p - p')[~/(p') + ~(p - p ')  + ll[(p _p,)2 + m 2] 

In the large-N limit, and defining 

o'(p)  - 
p2 + ~(p)  

p2 + m 2 

(29) 

(30) 
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V, is minimum if E0 is a solution of  the usual gap equation 

g2 I d~ 1 
~0 = m2 + 6- - (2,rr)o p2 + ~0 (31) 

For N finite, minimizing V, with respect to the variation of  0-(p) gives an 
integral equation which is solved by a 1/N expansion according to the proce- 
dure of  Section 2. As shown for the toy model of  the next section, the 
variational procedure for 0-(p) is very efficient even for the crudest approxima- 
tion -y(p) = 1. In this case the expression given in Grandati et al. (1992) for 
0-1(p 2) becomes quite simple, 

g20-0(1 + tY0) f d~ 1 
0-1(P) - 6(1 + 20.0)2 J (2~)D [(p _ q)2 + m 2] 

• "[(p _ q)2 + m 2] + (q2 + m2)2j 

In the procedure above one may wonder why the ~b-field was not elimi- 
nated completely from the outset to leave a p-dependent effective action only, 
and then a single Langevin equation for this field. Although this would lead 
to the correct p-propagator to leading order in 1/N, the study of  symmetry 
breaking is only possible with at least one component of the ~-field kept. 
In this perspective we choose here to keep all of  them. The benefit is a simple 
Langevin equation for p [equation (20)] which can be readily integrated. 
However, the price to pay is a p-propagator which, with the ansatz of equation 
(22), matches the exact one only in the perturbative regime. We show in the 
sequel that this is not detrimental to a good determination of  the physical 
p-propagator. 

4. APPLICATION:  TOY M O D E L  

In the case D = 0, (30) becomes 

V, = [0- - 1 -g2/(6m40-)] 2 1 g2 
m20-(0- + 1) + N 3m6~/0-(0- + ~ /+  1) (32) 

with ~ /=  l + g2/[6m40-2(1 + 20-')]. 
In the large-N limit, 0-0 = 1 + g2/(6m40-o) and with E0 = m20-0 one 

finds (Grandati et al., 1993) 

1 1 _ 1 

(~b2) - ]~o (m2/2)(1 + ~/1 + 2g2/3m 4) (33) 
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The direct minimization o f  (32) is straightforward. In Fig. 1 we  plot different 
estimations of  (+2)IN [exact, saddle point, and global variational results with 
and without (Grandati et al., 1993) the auxiliary field] as a function o f  log(g)  
for N = 3. Figure 2 shows the difference A(~b 2) = (l/N)((d~2)v - (l~)2),y=l) 
as a function of  log(g)  for  N -- 3. It is clear that even for  the crudest 
approximation o f  the p-propagator corresponding to ~/ = l the correlation 
(r is noticeably improved over  the whole range of  coupling with respect 
to the procedure with no auxiliary field. For ~ /=  1 the variational first-order 
correction in 1/N is particularly simple and reads, with u = (3m4[g2) 1/2, 

O'o(3U + , /2  + u2) 2 
(34) (rl (u 2 + 2)(5u + ~ + u2) 2 

The correlator is then 

with 

(+2) _ 1 2u { 
N m u + ~  1 

1 a2(u)  ~ + O 1 

a2(u) = ~-u + ~ ]  

(35) 

(36) 

1 ~ : exact 

~ \ \ .  . . . . .  : variational with 
0.8 ~ auxiliary field 

0 . 2  

0 

-? . . . .  -'~ . . . . . . . . . . . . . . . . . . . . . . .  o , 2 3 , 

log(g 2 ) 

Fig. 1. Propagator (d~2)/N as a function of the coupling g for N = 3. (--) Exact solution 
(Grandati et al., 1993); (- -) global variational approximation of the self-energy without the 
auxiliary field (Grandati et aL, 1993); ( . . . . .  ) global variational approximation of the self- 
energy with the auxiliary field; (---) large N-limit. 
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A<~2> 
0 . 0 1  

0 . 0 0 8  

0 . 0 0 6  

0 . 0 0 4  

0 . 0 0 2  

-1 0 1 2 3 4 

In(g 2) 

Fig. 2. The difference A(~b 2) o f  the propagators (dpZ)lN taken with 3, = 1 + g2116m4o'2(1 
+ 2o')] and ~/ = 1 as a function o f  the coupling g for N = 3. 

Even though the precise value of the p-propagator A o does not seem essential 
in determining the variational estimate of the two-point correlation function 
from the minimization of equation (32), it is of interest to test its approxima- 
tions since, being related to the @field four-point function, it governs the 
coupling constant renormalization. To leading order in IlN the p-propagator 
A ~  is known (Zinn-Justin, 1990) to be 

AgN(p) = -~- 1 + (2.~)D (q2 + Eo)((P - q)2 + E0) (37) 

In Fig. 3 we compare, for D = 0, different approximations to Ap [exact, 
Ag~, variational deduced from equation (20)] as a function of the coupling 
g. It is clear that keeping all components of the ~-field with a general linear 
ansatz in the noise "11 according to equation (22) fails to reproduce the p- 
propagator beyond the perturbative regime. This is not surprising, as a linear 
ansatz in the Gaussian noise ~1 cannot be expected to build up correctly a 
correlation function beyond the two-point level. 

5. CONCLUSION 

In its original form the stochastic variational principle of Greensite 
(1983) and Amundsen and Damgaard (1984) aims at a nonperturbative deter- 
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Ap 

4 - -  N = 3  

\ 

: exact  
: large N 

: variational 

- 1  0 2 3 4 

ln(g 2) 

Fig. 3. The propagator Ap of the auxiliary field as a function of the coupling g for N = 
3. ( - - )  Exact solution (Btrard et al., 1996); ( -  - )  solution to leading order in IIN; (---)  
variational estimate. 

mination of the self-energy. In practice it can only be implemented through 
a I/N expansion, as shown in Grandati etal. (1992, 1993). Although arguments 
can be given to assess the good convergence properties of the self-energy 
expansion in IlN in this framework, the question remained, on the one hand, 
of improving the variational scheme and, on the other hand, of access to 
nontrivial correlation functions of higher order than 2. We have shown here 
that these goals can be partially achieved with the introduction of an auxiliary 
composite field with its own stochastic dynamic. The improved effectiveness 
of the variational principle including this composite object can be attributed 
to the incorporation of nonlinear effects through its parametfized propagator. 
They could not be taken into account in the formalism involving trial ~b- 
fields alone, linear in the noise. However, the composite field propagator 
obtained here is only valid in the perturbative regime in the coupling constant 
and hence is improper for renormalization studies. To cure this deficiency 
one has to operate from the outset with an effective action where all but one 
component of the ~b-field have been integrated out, as we shall report else- 
where (B&ard et al., 1996). 
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